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ABSTRACT

A new n-dimensional Newton method is presented. In each step a whole

n-dimensional ball is determined rather than a single new approximation point.

This b a L l  contains the desired zero of the given function . The method is

globally convergent. If the given initial ball does not contain any zero , ther~

the method stops after a finite n umbe r of steps. Depending upon the assump-

tions whi ch are made , the convergence of the ball radii is linear , super—

linear or quadratic.

AMS (MOS) Subject Classifications: 30A08, 65H10
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&‘~~lu~
j (inclusion ) balls are used , it  is convenient to call the me thod a ball

\,wton methcd  . .-\ccordinglv the “usual” Newton me thod in the following will be called

a ~2~nt Newton method.

The basic idea of the following method is the use of sets (balls) instead of

points. This ide a originates in interval mathematics . The first interval Newton

method was given by N. E. Moore in 14 ] .  It is easy to show that the Moore method is

globally convergent for n 1. This was shown in [5] for the first time . In the

meantime , many interval variants of the Newton method have been investigated. A

survey for n = 1 has been given by W. J. Beiser ( 2 ] .  It seems , howe ver , that in

the case n 1 no globally convergent interval Newton method has been found. There

is indeed a criterion by Ale feld—Herzbe rger [1) which ensures global convergence for

Moore ’ s version. Neverthe less this criterion is rather unwieldy and is not sat isf ied

in most practical cases.

For complex valued functions f : B ‘ t. complex discs can be used

instead of complex inte rvals for the definition of a disc ‘~ewton method. This was

done by P. Henrici 13 1 but no global convergence coul l he proven yet. It -;ill be

shown that the complex problem can be treated as a special case of the following

general t:~eor:.

In order to de fine the r~oi nt Newton me thod in general  the fol lowing two

a.~sumptions are made :

~~‘ exists on B , (6)

, —L(~ ) cxi sts on B . ( 7 )

Iri~~~~ri~ ra~ t t ,  C ’ ) ,  d i f ferentiability of f on B is demanded for the new

m~~~~ - ) ~~. tr~~t (-ad of ( 1 , ) ,  it ~uffico~ to assume the validi t- .- of a certain inclusion

.i~ .n y h i  s c~ ndi L i r .  Thic condition can be formulated especially simp i-: for rh’

n = an)  ~~~ H ~~. It then roads

f ( s )  — f l y )  ~ (x — - ‘ C for x , y B . (8)

.
~~



C- -— - - - --.-—. -.———— —

Herein S := . — z o~ s
’ T is a -urn: lox disc si~~- m i :  u i : ’ :c. r~ . -

~~~~~ It i.~ assumed that 3 < < 1, i.e. ‘

O ) S  .

These conditions (6), (7) for the point methu l and (h), hi) f r  tra r a I l  ri~~~~
-.y - 

- 
-

be compared. On the one han d , the assumption (8) is ~cuk.-r than Cb ) , :j -~~~~ - 1:.

(8)  doe s not even have to be di ffe rentiable . On t h-~ othe r han i, ( b )  -~~~
-1 (~~)

stronger than ( 6 ) ,  (7) because the data S, hay-: to be tn :wr ex~ 1i~~ -:

because (6 ) ,  (8) and (9) already imply ( 7 ) .

The conditions to be imposed on f in ~ fo r  n • - 2 are sti l l  ~~~t. wc-ak .

They are not nearly as restrictive as the Kan’orovich condition ace rt-: ;a_)k ,e~~n::

[7] ,  p. 421). Even if f is analytic t a t  condition is true in qere ra l  ar,~~- ~~:. a

very small neighbourhood of a zero.

In what follows the following ra) jern w i l l  not h’~ uon~ iCi~~reri : : : ‘- a

f : G + E ~~, find all ze ros of f in Ti. If the re is more than one zcrr- in

if G is conve x then the re are in ger er~~l sints in G w ere is r r  :ny~~: 
-

This can be shown already in the case n = 1 by the mean value theorem. Wnc~ ar

these points the point Newton method (1), (2) cannot be applied. There fore t rw  ~e - .t ::.

me thod always has to be combined with some other method if all the zeros of f on

B are to be found. Actually, the new proposed ball Newton method also could he

used for the solution of this more general problem. It not only guarantees the

inclusion z e Z for ~ = 0, 1, ‘ ‘ ‘ but it also gives information rcgard:n

exclusions of the kind z ~ M, where ~l is an appropriate set .  Nith interval

Newton methods these ideas have already been used successfully for the rietcrrriinar::n

of all zeros of f in C , espec ially in the case n = 1. There will be

report upon the adoption of the ball Newton method to this more ~eneral :~~~~ I- - o.

It is therefore not the essential purpose of the following -5 1cr  to n-:mur:~ - a l l

the zeros of a given function f. Rather , it will introduce a ne - - - fami ly af - :

methods and will investigate their propcrtiea .

-4-
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1. Introduction . / ..~

In what follows the n-dimensional ball B := -z ~
° lib - zi l :: I-

used as the basic domain. The zeros e B of the given function f : B -. ~
, “N. /

wanted.

Let f be differentiable on B with the Jacobian f ’ . Let the inverse

exist on B. Then the usual Newton method can be ~~ fined: The sequence - x  - of

approximations X ,, ~ is recurs ively constructed by

x0 € B , (1:

: x -  ($~ )l (x) fIx ) for u = 0, ~~, 
. . (2 )

There are many variations of (1), (2). In the simplified Newton method (2) is

replaced by

x : x — ( t ’ ) 1 (x 1 f(x ) for v = 0, 1, .
v+l .3 0

The literature dealing with the Newton method is huge . An introduction is given by

L. Rail (8], and a survey may be found in the book of Ortega-Ftheinboldt (7].

The methods (1), (2) and (1), (3) have the advantage that they are convergent in

a neighborhood U (~) of a zero ~ of f. This means that

e U (~~) (4 )

implies x s 0(z) for all v = 0, 1, and that urn x = z. This property is

called local convergen.~~~ If ~~
‘ is continuous or if I’ satisfies a Lipschitz

condition , then the order of convergence of (4), (2) is superlinear or quadratic.

*
This paper was stimulated by the “Symposium on Analysis and Computation of Pix-r d
Points ” at the University of Wisconsin-Madison , Madison , Wisconsin , ‘ .S. ’~. an ia - -
of 1979. It was written while the author was visiting the Mathematics Research
Center at the University of Wisconsin. Address of the author: Institut fVr r
Angewandte Mathematik der Tinivers~ t’át, Hermann—He rder-Str. 10, D 78 -0 !C rciiur~ i . c. .
West Germany.
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The disadvantages of (1), (2) and (1), (~~) are well—known :

1) Prom Cl) it may follow that

x 4 B (5)

for some v - Ii. In this case the method cannot be applied further.

2) Even if x B is true for all a = 0, 1, . the sequence { x }  is not

necessar ily convergent.

3) Without additional assumptions on f there are rio easily de te rmined a priori

or a posteriori error bounds.

In orde r to avoid the first two disadvantage s , modif ied Newton me thods are

sometime s considered instead of (1), (2). For exasiple the new rule

— l
: x — o ( . ’ ’) ( x )  f ( x ) for v = 0, 1,

is often conside red (See Ortega—Ftheinbold [7 ] ) .  Herein { a }  is a sequence of

appropriate real numbe rs often defined by minimization me thods . If the a are

chosen suitably then (5)  can be avoide d and conve rgence for all x~ c B can be

enforced. This is called global convergence. Theoretically these results are very

Satisfying. Practically , their use is often quite awkward . Because of this and in

orde r to reriove the above third disadvantage , in what fol low s a new ~~ roach is

i re  aen ted.

The osin idea of the new method is to construct a whole ball 2 with the

~ro1 c-rt - z Z 1
, instead of de termining a new x in each ste) a: in (2)

yr C’) . )!ence in each step a new a priori error bound is found. The initial ball

~w 2 : -  B. I f  z — Z a B is chosen, then case (5) can never occur. It w i l l  be

:hown tr ot t radii of the balls Z converge to zero at least like a geometri~~aI

a -: - r yE- . T i j O c -  Z Z and z - 2 , z ‘ z , hence global convergi n~~: occur- - . a a a

I )‘ - n ote - r . an: t i -w i  a on f~ cc: ru) cr1 i:iear or -j : i a l r i t  1 C a r c  - I t f l~~ C Si:

a r . .  If t a - r e  is no zero z of f in B then thE method at - h  - af ter a finite

c-:, r a t  a .  This is an additional advantage of the new method.

— 2— 
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Sl~~lJIhIOAhCll ANP EXPLANATION

tb.’ nair :  -! - -~ -l~~~w in h um e r i  cal Analr ’sis is the computation of the

:~ -roa ~ f o n-dimensional func t ion  f ~~~~~ -. ~~ For cent.uries , the so called

hewtan method has bee:1 used and investigated. This method has some very

important advantages.

i) If it conve rges then  its rate of convergence is usually quadratic.

ii) It is qui te easr’ to describe , to understand and to program.

There are , however, very severe restrictions, drawbacks and disadvantages

to this method :

i) In its n-are form it is not a method at all nor does it provide an

-J algorithm since in general one cannot predict a priori if it will work.

a ii) It nrovi des “aj- proximations ” but no error botinds , i.e. these “approximations”

ma- ’ have no signi ficance at all.

iii) Tven if it - -.-orks and converges (whi ch contrary to 10: ular belie f does not

occur f- -ac often) jE cannot give an .- information whetho r a zero lies in a

g iven domain or i f  that  domain is free of ze ros .

The n c- thu d described in t h i s  a r -c r avoids a l l  the above disadvantage s w i t h —

a-at losin-a  tac advantage s of the usual  Newton method. It is based on the

fundamenta l  ide a of i n ter v a l  mathemat ics : Instead of comput ing  “appro ximation

yaI ’t~~” to t , i. 10i I t i) ~ I of a math emat i ca l  roblem without  known error  bounds ,

s u ra ld  ~~ o ’!dl I dt-  “ a: ro ximat ior i  sets ” -.~hic ) i  are guaranteed to contain 

ol j on .  in Oh-a ac-the l uaed h e r e  . one of the mo-a t. sin~ lc such sets is

- , : T O ~ ir h~~lia.  :11 t h -  disadvan tage- n of t h e  “poin t ” hewton method disa r pear

- u - ’ , es - c -  -:ita ~~-s t- a “ball “ lieu- t an method. Astonishingi-: the ass um pt ioa s

- ~ - ~~~ - ~n - - t  i t- : .  f are not morn c-’jnr:licated. In a cer ta in  sense 

‘ - ‘-n ~~~~
- ~~‘ c ’ an  I C “ : :o~~~i n u i .  “ Instead of di fferentiability of f

,- n ; - r a , r : e i . :  . r , a t :~~~ ’ ori ) i t ~~- n  is ru-~uirc’d. 

- - - - . - h t- f - c  ; -  - - s - r n  [1 r ig  or: I vi  -as o~ r~-ss’-iI i n  t h is  descriptive

~~ ‘5 : - - ij  , ~:. i :i o i -:i tl, the ,o -i~ Io r of this rc’nort.

3
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2 .  Notat ions and de finitions; balls and regular ball ope ratorr.

2.1. Let n c i~ be the f ixe d dimension number. Let an arbitrary r a m  • .e

chosen on R
n. AS matrix norm for n ‘ n—matrices the operator norn narr- a~ ar. -11r.y

to It ’  1 will be used. Only real value s will be considered for simp li cit~- .

Howeve r , in e xamples the space f will be used also , a: T t- .

Notat ions:

1) Lower case Greek letters (a , ~~, 
• • ) aiwacs ric an real

a

numbers .

2 )  Lower case Roman le tters (a , b, • z, z , • • ) are n-cliriensional

vectors or vector valued functions. (Exception : n always means the in tege r

dimension number. )

3) cap ital Greek letters (~~, 
r A . • • ) denote n n—matrice s or matrix

functions. As usual Ax , A means matrix mul tiplication .

4) capital Roman letters (A, B, • • • , Z, Z , • . ) are n-dimensional seta

in particular balls or ball valued functions. (Exception : I denotes the

identity matrix. )

5 ) The function family considered is denoted by F.

Remark: In contrast to functional analysis, which uses different alphabets to

distinguish between elements and operators , here different alphabets will identif b

points and operators which have value s in different Sets.

2.2.  Definition (ball): Let z € ~ n , 0 < c P .  The set

Z := {x ~ n 111 — x t t < ~
) (1:)

is called a (n—dimensional real) ball W ith the midpoint (center) z and th~ raS

—5—
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::atst~ -ns to ~in~
Z = ( z ,

z = mid Z
( 11)

- = rad 2

x~~~ Z ) t x — z I H ~~

The mc-:i -aint of a ball which is characterized by a capital Roman letter will be

-~~li:d b-a t:ia sans- : I:: - Roman letter. For the radius , howeve r , the

carresm-ond ing small Greek lette r is used. If G ~~iR~ then the set of all such balls

— 
S will be denote d by I( (G) .  Clearly Rn c~~~(~~~~)

1) inc ball Z -: ~ (mn ) is compact and convex.

2) The inclusion 0 ~ = (z , ~ ) is true if and only if > i z fl.

Def ini tion (B I (
~~~ ) )  : The set of all balls Z ,: ]K(~~

n
) for which 0 Z holds isno -

denoted ba 
~ no 

(m
n
)

Fro:~e rt1es:

1) Let be 2 - 1K (t~~ ) and (diffe ring from the notation in (11)) use the characteriza-

tion

Z = ~z, l z) t )

then tar- following holds : -a ~ 1K (s
n
) i f f  ~ ~ 0 and 0 - < 1.

2 )  Tf  L = ( - ,  — i i : ) >  -- 1 K  ( f ), then the se t of all balls (: , - V~~Z U )  , where
no

I- , h a s  in a (double ) -uric- wi th the vertex at zero and wi th the def i n i ng

an;le := ar c sin - ‘ See :i gurc 1 f-ar n = 2.

L: flr -at j a- n (ball arithmetic): ~~~- t  a p. a P
0
, 2 = (z . ~) 1K(~~n ) Define

S = S • -
‘ := ,z , - , :) , (12)

a 5=  Z ‘- -i : Ia + z, ~) . (13)

- - - r u i e r , ~ i-ant I -- . -). : 1+ ’! , ‘ - ~~~~ ar ’ ‘a - -~ in :ahe, e f e - I l - -ca -, i l — a

a arr - :cr -rr - - a or’- rhe r- far— f l a t  inv’-sti gated h er a .
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Figure 1. n = 2, Euclidean metric. The set of balls ( u Z , \ Ij~~~II ) for
a. ~ is contained in a (double ) cone with the defining angle

: arc sin X .

Procert ies:

1) If = 0 then (12) and ( 13) are the usual definitions on IR
n
.

2 )  The following inclusions are true :

I x e o ’ Z  for all. x - Z

a + x a a + S for all x £ Z

Defin ition (Cx c ‘ 1 > ) :  Let X , Y a 1 K(~~~ ) and let X n Y ~ 0. Then there is (at

- : least) one ball S ‘- 1K(1K
T

) for which N ri Y c Z and with rad Z = m m .  If

there is more than one , an arbitrary one is selected. It is denoted by

Z = ( x n y )

See agura 2 for n = 2 and for the Euclidean metric.

7ror-ertic-s : Let :- = C x , -:) , ‘f = C y,  r )  and Z = C X  ~ Y )  = I z , ~~> .  Then the

fa il-yw in-J inclusions and inequalities are true :

z ’ X  , z e Y
(14)

- mm (~~, ‘- )

—7—
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V
x

Z =~~X~~Y)

X n Y

Fi gure 2. n = 2 , Euclide an metric. The intersection X 11 Y of the two balls
N and Y is shaded. Z = C X  n Y )  is the smallest ball containing

2.3. Definition (regular ball operator) : Let A be a regular n n—matrix , -and

R with 0 - A < 1. The regular ball operator L is defined by the ball

vaijed operator

L : R
n (lEn) -j {o}no

nLx : (Ax , Att Ax i l ) for x e l E

Notations: The operator L will also be denoted by

L = ( ( A , A ) )

Remarks:

1) In what fo llows , more general ball valued operators S : Rn 
,1K(lEn) are not

needed.

2 ) Any ball operator can also be considered as an operator ball according to

L = < I f , A ) >  
-

(15 )
: n x n—matrix I t (~ 

— A )x tl < XII Ax lt for all x a

3) This view and formula (15) are equivalent to

c Lx : < A x , A l t Ax II) for all ~ ~ lE
n 

(hA l

4) The inclusion (16 ) will be abbreviated to

L

—8 —

_ _ _ _ _  _ _ _ _  -—---- -‘- - --‘ -~~~~~ -~~~~ ---- -------— —*--=—---“---~~~~- - -- -—-



r~~ w

Properties: For any regular ball operator L the following is true :

1) O~~~ Lx for x~~~ O

2 ) -b e L = < < A , > )  if and only if

II -~A~ - i t t  = I t (‘~ 
- ‘h’ . 1 

1 <  .

This means that the relative error between ‘~ and A is bounded by ‘ 1.

3) If b ~ L = < < A , A ) >  then ‘~ is a regular matrix and for the inverse - 
1 

~~~~
,

following inequality holds with cond A : t Al l IL’. ~II :

II ~i
1
A — I It = It (<H’ — A 1) A It 

~ 1 — A 
cond . . (17)

This means again that the relative error between <H’ and .f 1 is bounded. If in

addition

1X E
1 + cond A

holds then the ri ght hand side of (17) is smaller than one , i.e.

<H’ L
1 

: < ( A 1’, j ” ’~ 
con d ~~> )

and L
1 

is a regular ball operator.

—9—
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The class of function s F .

3.1 Definition (class F): L, - t  t : . , a-1.i:s F of f - a:r -tion s Ia-  t ) ie  ;c t of a l l

function s f : B ‘~~~~° ,.hi : o t a  f e r - , 1 ’~ ir., ; r rai~crt - s- . For each ,:~~~t C

C of the form

c = ( a , ~) B (19)

with a — 5, there exist a regular n n—matri x ‘. = 1: (C) and a real number

= \(C) such that

0 < - - <- 1 (20)

and for all x , y - C ,

l x  - y - .‘(f(x) - f ( ) ) I l  Al l .’ ( f ( x )  - f(y))tl • (21)

if o - .- r ,- ~s more Fir::: one (C) and/or : 1C C , a-: arbitrary one is :ae iec ted  and

t~~a ~aeci t o  F ,

I 
- 

Remarks:

LI 1) By usin g the regular ball operator

L : < < A , 1) )  (22)

the inequalities (20 ) ,  (21) can also be written as

x — y - L ( f(x )  — f(y)) for x, y C . ( 23 )

2) If f F then the inverse f 1 of f exists on the set f ( B )  := ‘f(x) x € B I .

Hence by defin ing u := f(x), v := f ( y ) the inclusion (23) can also be written as

f 
1

( u )  — f 
1
(v) ‘r L(u — v) . (24)

5- ron (2 4 )  th— class F of functions can also be characterized by the

hI ivalent a- finition (F) : The class F consists of the set of all functions

f : B ‘ for which H’ exists on f IB) and which satisfy the inclusion

Li~aschi tz condition (24) on c defined by (19).

~,2, :-1it thuac result:: and with those of ~2, the functions f ‘ F have the following

Ii in a o-- - :f- - , n- -,a- r-- z of f - F  in 5.

- I ’  fin - i ( 1’) ,  in.’ function f F satisfies the Lipschitz condition

_ _  _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~
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< f(x) — f ( y ) < I
_l

u lx  — yIC

k-nce , f is con tinuous on B. There arc similar Lipschi tz conditions for f 1
.

3) Let f F be Fr~ che t d i f f e r e n tiable at the poin t x € B and le t 
~~
‘ (x) be

the Jacobian. Then (r ’ ) 1
(x) exists and is bounded by

( , )“l (x)II < (1 + - ) I I IIII
lL’~

1I ! = -

Moreove r , the relative error between A and ( :  ) l 
can be bounded by

( (  H’ Cx) - :‘.)  T11( = II ( - ~~
‘ H’ (x )H’ - Ill < A

4) Let f F be Fr~ chet d i f f e r entiable on the en tire domain C defined by (19).

Then for all x , y C C

Ii ’ ( x )  — 4, ’ (y ) Ii < ~~~~~~ IIA ’111

• 5) The result of 4) implies: Assume that for all sets c := A n B whe re

a = mid A e B the following is true :

~
—l 

(C) II < Ii , )
( 2 5 )

~~C) 
~ ~o 1

for appropriate real values ‘ P-. If

~ (C)  -- 0 for rad A • 0 , (26)

the. a ’ is continuous on B and if there exists a c R such that

(C) < a • rad A , (27 )

is Li:schitz continuous on B.

- . 5 ,  - r 1tc- r i-a for f -~ F.

A:ara’ i -  that uerc exists a matri X 2 = 2 ( x , y )  1= .- ( y ,  x ) )  for all x , y t c 
1 ‘ 1 0 )  ~uch that

f ( x )  - f ( y ) = - b ( x  - y )  . ( 2 8 )

-11-
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This is certainly true if f satisfies one of the mean value theorems on C C - s c- -

Ortega—Rhe inboldt [71). In general there are infinitely man y such matrices. It - raI l

be shown in §4 how to construct such matrices ~ which are continuous . ‘

3.3.1. Let there exist ,-l = jH’~ x , y)  on C and le t the inclusion

y )  a L (29 )

be satisfied for all x, y e c with the regular ball operator L = < ( ‘ ., 1> ) .  Then

(21) is true , i.e. f € F.

3.3.2. Let there exist an n x n—matrix A and a real constant 0 < ‘ < 1 such tha ’s

for all x, y c C

III — A4,ll < A / ( l + A) . ( 3 D )

Then A 1 
and 4, 1

(x , y) do exist on C , the operator L := ( ( A , — ) >  is regular

and e L. Hence f a F by 3.3.1.

- 
l 3.3.3. Let f be continuously Fr~chet differentiable on C with the Jacobian

~‘ = 4i’ Ix , y ) .  For x , y € C define:

1
4i (x , y)  : f 

~‘ (x + t(y — x))dt . (31 )
0

From the Mean Value Theorem and because C := A n B is conve x, the following two

additional sufficient conditions arise :

3.3.3. 1.  Let there be a regular n x n-matrix A and a real number

0 < o < 1/ (1 + con d A) such that for all x € C:

41’ (x) e L2 : ( < A 1’ , o ) )  .

Then also 41 (x, y) € L
2 

for all x , y r C , furthermore ~- 1(x , y)  exists on

and with the definition A := j—~
——- cond A, the inclusion - L ~~,

holds by (18). Then, f c F by (29).

—12—
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1 , 3 .3,2, Let there be an n n—matrix A and a real numbe r h ~‘ - 1 s ca n

for all x a C:

III — A41’ (x ) Il < A/I l  + A )

Then (30) holds , so A 1 and 41
1(x , y) exist for x , y c C and f a F C:aal ic ,

3.4. Exan~ les: The case n = 1 and the con~ 1ex case.

The two Spaces R and C can be treated together. As usual C is imbc-ddc-’i an

1R
2 ; furthe rmore on both lE and C the Euclidean norm is used. In what foll asa ,

the case n = 1 is shown ; the notations for C are then added in square brackets : I.

The ball Z = < z , ~ ) is an interval [a disc]. If 0 ~ Z then Z
1 

exists and

is an interval [a disc] which can be written as

= 
z~~ <i-i ~ I~~~~2 )

If x € Z then also x 1 s Z 1.

The application of a regular ball operator S = < < ~~ . , o > >  to an element x can

be interpre ted as real [complex] multiplication of the real interval <1 , 1 =

= ~1 
— e , 1 -i. o) by 0 � ~ eP ic C) and x ]R[~ C] according to

S x =  <ix , e~~x l ) = ~ <1 , o )  • x . (33)

For functions f : B • R(C] and C def ined by (19) one has the

Criterion: On PlC] the property f e F is true if and only if f sat isf ies on

any set C the inclusion Lipschitz condition

f (x)  - f (y )  € S(x — y) for x , y c .

Herein S = • ( 1 ,  a )  is defined according to (33) wi th 0 ~ ~. ~~[ - - C]  an sI

0 < a < 1. The ball operator L = < < A , A ) )  in (21 ) and (23)  is defined bC

—l 2A := ~ / ( 1 — a  ) , .A := . ( 34 ’

If f is di ffe rentiable on C [hence holomorphici then (8) is satisfied f,a r

41 ’ (z) e ~ ‘ (1 , a )  for z € C . (32 )

—13—
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The E~~ ofs are elementarj Ion C for example by using the inversion of complex

circles I and will be omitted.
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4. T :0 ball ‘R- -,ct )ri  - I: . 1 S t - : :  a ,

‘efiniti::, (ball ~:.- -a.-t~~~ a- -i .t- ni: Let f — F, A = <5 , a )  € ~((lE
n) with a - B. Let

L = < 1  . ,  ) )  be r:-:~ requiar ball operator corresponding to C := A n B

according to (22). :~ef ine the ball Newton operator N by

N :  C E(~~~ )

Mx : x — Lf (x) (36 )

= C x  — ‘f Ix )  , AII’ f (x )tI ) for x - C

Obviously N = N ( C ) ,  this dependence wi l l  be observed and used later occasionally.

Properties :

1) From (13) and by (11) it follows that

mid Mx = x - f (x)
and (37)

rad Nx = AH ’ f(x) lI .

a - Hence both mid Nx and cad Mx are continuous on B.

C 2)  If ~ a C then :

f ( z)  = 0 if and only if z = N(z )

Hence the zeros of f are on C e xactly the fixed points of the operator N.

3)  Test N (Non—existence): If x -~ C and

C fi Mx = 0

then there exists no zero of f on C.

4) Test S (Existence):  Let f € F and assume that f is Fr~ che t differentiable

on C. Let the re be one point x a C such that

N X C C  . (38)

Then, f has (exactly ) one ze ro c c.

51 If x , z - - - C and f(z) = 0 then

Z a N x  ( 39)

Tiis  means: B-f apply ing the Newton operator N to an arbitrary point x - C one

o a t :  a: - e rror  hound for the zero ~ of f in C. In other words : By applying the

—15—
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Newton operator N no zero z of f can “get lost. ” Howe ve r , x I Lx i:

x ,’ z.

6) Let there exist a sequence C x )  with - C for a !-I and wit:. lam x ,

where f ( s) 0, Then the following is true :

z € N x  for V c ~~~‘I

lim mid Mx = z  and ( 4 )
VV4~

lim rad Nx , = 0 . (4 1 )

This means : The application of the Newton operator N to a convergent s.- 4 - ..ence

{,c ) gives a sequence of error bounds {Nx } which converges also in the sense of

(40)  and (41) .

The proofs of the properties 1) to 3) and 5), 6) will be omitted. On ly

proof of Test E will be given. The basic idea of this proof has already been used

in an earlier paper [6] .  Define x = 
~~l’ 

• • . ~~ ) ,  y = (r , ‘ n~~
’

= 
~~~~~ ‘ ‘ ~n~ ’ ~ : ~~~~~~~~~ Let the matrix ~ = 4i (x , y )  have the

components 4, = 41
~~~

L1~ ~2 ’ 
• . . 

~~~~~ 
~~~~ ‘ 

~~~~+~~~
‘ 

~~ 
for ., v = l (l)n.

Let the 4, be defined by the following divided differences

‘~ v—l ’~ v ’~ u+l’”~~~ ‘~ n~ for S

4, :

, g )  for ~ =

The identity (28) is satisfied by the construction of 4,. If one of th. arguments

x or y is fixed, then 4 , (x, y)  is continuous with respect to the other argument

y or x on C. Because of f c F, the inverse ~ 
1

(x , y)  exists for all

x , y C. Furthe rmore , 41 1(x , y) is also partially continuous with respect to

x or y on C. Let x t C be fixed. Define

—16- 



—l - -
y — -, Ix , y ) f ( y )  . - ‘ - - C

The function g is continuous for y a C. Furthermore , by (28) tIre .-i- nt i t :

g ( y ) x - .- 1 (x , y ) f ( x )

holds . 8y using (36 ) ,  (29) and (38 ) one then ge ts

g(y) c x — Lf (x )  = Mx C C

Hence the continuous function g maps the convex and compact set C into itself.

By the Schauder fixed point theorem , there is there fore at least one f ixed I~oint

= g (~ ) € C. But because of (42) this fixed point y of g is also a zero of the

function f. a

— 17—



5. The si~~~~~,fj ed_ball-~~~~~2~~~~lori thm SNA .

S ~ 050 f -~ F .

Problem:

1) is there a zero z of f on B?

11) If yes , comp ute ~ in a constructive way .

How tojroceed: A simplified ball Newton algorithm SNA will be prese nted. Starting

w ith 2 3 : B successive balls z1, z2 , will be constructed with the midpoints

z : u u d Z a B  for v = 0 , l,~~ 
. .

Eithe r the algorithm stops after a finite number of steps. This is true if and only a

t f  f doe s not have a ze ro a B.

5r the construction can be continuated indefinitely. This happens if and only if

there is a (uniquely de termined) zero ~ of f on B. Then the midpoints z con-

verge to that zero z. Furthe rmore , at each step the error inclusion z e Z holds

and the radii ~ conve rge to zero.

C During this simplified algorithm SNA the fixed initial parame ters t- (B) , A (B)

are a lways used , notwithstanding the possibility that later on better data 5 ( Z ) ,

- - (Z,) could be available . Hence SNA corresponds to the simplified point Newton

method (1), (3) . Like the latter it is only linearly convergent. A more general

Newton algori thm NA wi th updating in each step will later be presented in §6.  It

corresponds to the general point Newton method (1), (2) and, there fo re , is super-

linearly or even quadratically convergent.

3 .2.  Preliminary remark. Let A = (a, ci- ) be a ball and relative to the midpoint

a define the new ball Na := a - Lf (a) with the Newton operator N. Then, depending

on the value of Cf(a) CC , different possibilities arise as sketched in Figure 3 for

= 2 -are) the Eiiclidean norm . As long as II f (a) Il is very small , the ball Na is

con~-lota iy contained in S.. For growing values of tl f (a)Cl the radius of Na expands.

i r,tor- at lon  A :~a , which is shaded in Figure 3, is f i r s t  growing but shr inks

S a ’ - r 5 ’ d  f in~~1l- ,’ disappears completely. Let 3 be the diameter of the set A n Na.

—IS— h
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rw

c ir: a : . -tang S a;r.rc- 3 , one sees that always

5 — 2 - i

/
/

/ /

A / / N a
~~~~~~~~~~~ / 1 

~—~
------

~‘j
, I—-cj /

/ /
-(._.~ (.--(:~)~4 o _ ’ ---  € -

YF

\~ ~~~~
~~~~~~~~ 

\ 
N

‘igures 3a) to~~~- ): n = 2 , Euclidian norm . Comparison of the balls A = (a , a)
and La for different value s of II f(a)II . The intersection
A a Na is shaded, Its diameter is ~~. The ball < A  ci Na)
is dashed. 
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The maximum is reached in figure 3c). By constructing the small.- - .t hall :~~. - -

which contains the set A ci Na (this ball is dashed in Figure-~ 3d ‘s-a u - ) ) ,

there fore gets for -i ~‘ 0

/2 rad (A f l N a ) < -, < i . 4 3

Kindly note that the midpoint of the ball <A ci Na ) always lies in A C~nd  in La

too). This follows from (14).

5.3. Definition of the algorithm SNA.

Since 1 € F, there are constants A(B) , 3 (B) sa tisf ying (20), (21). Nit-s

these constants the fixed Newton Operator N is defined by (36). The algorithm

is defined recursively . Since the initial ball Z
0 

:= B has an exceptional posita 3- ,

the dete rmination of Z1 is different from that of Z2 , Z3 , 
• •

Initial utep: Define Z0 := B = <~~0~ 
~~ 
) and furthe rmore the ball Hz

0
.

1. If Z
0 

ci Hz0 0 then the algorithm is stopped.

2. If Z0 
ci Hz 0 ~ 0 then define

ci Hz0
) . (44)

Continuation step: ASSUme that Z for v “ 1 is already defined wi th  the

property z = mid 2 ~ 2 . The ball Hz is derived from z
V V 0 v

1. If Z~ ci Hz = 0 then the algorithm is stopped.

2. If Z~ ci Hz ~ 0 then a new preliminary ball Z
~~ 1 

is constructed by

— Z~ : (Z  ci Nz ) . ( $ 2 )
v-+’l v -a

2.1. If ci Z0 = 0 then the algorithm is stopped.

2.2, Let Z~~1 
ci 2

0 ~ 0 and let z* 1 := mid Z*
1
.

2.2.1. If z* 1 € 
~~~ 

then define

2 : Z *  a-;-v+l v+l -

2 .2 .2 .  If z * 1 ~ Z0 then de fine

Z : = ( Z  c i Z *  > . 
S _ _ i ‘0 -a i-1

-20—
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5. 4. Theorem 1: Suppose f F. The function f has no zero ~n B if - ar - 3 ’an] -

the algorithm SNA stops. The function 1 has a (uniquely ~icte runin- ’i) z-ar c

z s B if and only if the algorithm SNA can be continued indefinatel:. . n ‘ s a S s

case i t yields a sequence {z} of balls Z = (z , ‘ C  for whic :

lim z = z € B

and

- - C z € Z for u = 0, 1,V

The sequence of the ball radii conve rges at least l inearly to zero accor ding ta

a l i inS O ,

— < A~ for V = 0 , 1,- I V+l = V

Proof:

-~ 1) If A = 0 then f is a linear function by (21). In this case the application

-
~ of the ball Newton operator H to z

0 
yields the point z. If ~ B then the

algorithm stops at the initial step. If z € B, then the algorithm never s top s and

-
~ gives the result Z = (~~, 0> for all V = 1, 2 , . In what follows , there fore ,

A > 0 can be assumed with loss of generality .

2) Assume that there is a (uniquely determined) zero ~ of f on Z0 := B. Then

I € Hz 0 by (39). Therefore, ~ c Z
1 

also , where Z
1 

is defined by (44). Hence ,

the algorithm is not stopped during the initial step .

Assume that it is already proved that ~ € Z By construction , z - Z
0

.

- 
- 

There fore , z c Nz by (39) and this implies ~ € Z~~1, where is defined cc

(45 ) .  Hence, neither S ci Hz = 0 nOr ci Z
0
=0 and the refs r€ the slqc;i~it ~ :~~5 e

not stopped at the v—th step either.

I This is true for all v • 0 , 1, and means: If z € B, then th~ ball

Newton algorithm SNA does not stop .

3) Conversely, assui~~ now that the algorithm SNA does not stop . It is to b~ s a T ’- -: ’ :

- 
that the sequence {z} of the ball midpoints converges to a limit point z F..

—21—
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From t - ’ 0  definition (44), one deduces because of z
1 

Z
0 

and because

-of (43) t u e  two inequalities

Ilz
~ 

- z I l  
~ h( ‘

‘
1 ~ 

‘~-o . 
(5 1 )

Oontinuation ~~~
-: : - ,  By inserting (43)  in the de finition (45)  and observing (14) one

IJz * — z II < 
~ 

( 5 2 )H- .. - = a

a c . ( 5 3 )

~-+1 =

~n tie case 2,2.1. 1 - ~-~ ii,: of (46 ) th i s  give s

lIz — z ii a a ,
V-fl V

a- a . ( 5 5 )
V

In tie case 2 . 2 . 2 . ,  one deduces from the def inition (47) by observing (14) the

an oau-ualitjes

li z — z~ II < 5* , ( 5 6 )a- +1 -a+1 = -a+l

a- < ( 57)‘v+l = -

The inequalities ( 5 2 ) ,  (56) and (53)  together with the triangle inequality therefore

yield

lI z — z I l  < -
~ +~~~~~~

a+l V = aa

( 5 8 )

< ‘ ( 1  ~ A )

T S c  i re c- .aality ( 5 7 )  together wi th (53)  lead to the previous inequality (55) .

These re-io n inequal ities (51) for o = 0 and (5 5)  for v > 1 are exactly the

a a - O L Ja ls t- . - (49)  dlaLme d in Theorc:m 1. 5- using induction one gets from th is  that

- .
~~~~ 5-a- c = 0 , r, - . (59)

‘:‘ a’su L’s.1 ra 3 te - irc- -~- .als ’- i ;-s (5r)), ( 3 4 )  and (58) and b- - observing (59), one gets f-,r

.1: ‘ , 1, . . ‘ s a c  boucids

- — ~~~~~ ‘~~~- ‘ - .
4
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1 
— z ,lI < 50

(1 +

and from this for all a- a ,

- 
— z ,I ! 

-
~ 

__ i _2a

Hence , { z  } is a Cauchy sequence because A a 1. The refore , z 
- 

converges to a

limit point z. This proves (48) because z - - Z~ for a = 0 , ~~,

4) It remains to be shown that this limit point z in (48) is a zero of f. In orde r

to show this , one defines the set of balls ~~z } corresponding to the midpoints z 
-

of the balls Z . It is assumed that the algorithm SNA does not stop , hen ce

Z ci Lz 
- ~ 0. By this and b-a the triangle inequality the radii of Hz can be

bounded ba

rad NZ ~~ ç .1/(l — A )  . (60 )

On the other hand, one sees from (37) that

rad Hz = A ll ..f (z CII > 311 :5
111 1 

II f (z ) II . (61)

~
j  inserting (61) and (59) in %0) one finally gets for a =  0, ~

IIf( z )II < 

~o 
a+l

Since ~- a 1, this gives insnediately lie f(z ) = 0. Because of the continuity of f

and because of (48) the limit point z is there fore a (namely , the ) zero of f in B.

5)  This e xhausts all logical possibilities. Hence Theorem 1 is proved. •

4 3 . 5 .  >-~ith this procedure and these results an e l.:-: answer can be given to the

>ctended Problem: Let f F , assume A = ~a , - i )  E (~ - )  , a B , C := ( A  a- F . > . a -d o

if there is a zero z of f on C. If yea , then compute z in a constructive

3ol-~t ion : ~acu ,1aco the initial step in the algor ithm SNA by Z
0 : B, Z1 : C. Sub

~~ - s - r a t ],.’ 5r-f ine Z
2

, Z
3

, as above by the continuation step. Then Theorem 1

a-- a - la i rs  - ia l ud  if one r--~~1acu-s B by C.

~23-  
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6. The general ball Newton algorithm NA.

Definition (NA): The initial step is carried out as in the algori tho sLA, It  ~ . -

zo : B and 2
1 

by (44). Assume that the ball 2 is airead-.- &tor:ai: for

n > 1. Define C := Z ci 2 and choose )(C 1, -‘- ( C  ) such tC . at (2 ) ,  ( L I I
= V 0 V 3 a

are satisfied. Define the operator N by (36 ) with these constants . :ar r5 -

the continuation step as in the algorithm SNA.

Remark: At each step the “ full available information ” is ex ploite d f ear - i sa - a r .

Hence , the algorithm NA corresponds to the point Newton algorith m (1 ) ,  ( 2 ) .

Theorem 2: Let f € F and assume (25) and either

a) the condition (26) or

b) the condition (27).

Then , all the stat ements of Theorem 1 also remain true for the a lq c r i t :m LA,

addition to (49) the following holds : The convergence of the ball radai ‘ a

eithe r

a) super l inear or

b) quadratic.

The proof follows imediately from the definitions (25) to (27).

—24—
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• 7. Ex amp les.

The fol lowing two e xamples have been chosen deliberately to ne airnl.le -

space ~ 
~ 2 is used. In both cases , the function f : -. S is a ‘

~ 
aadrs i

polynomial, and its zeros are there fore known . Furthermore the derivativ e : ‘

f is linear. If c € IK(S) is a disc then the set ~~
‘ (c) := ‘ ( z )  z a C: a4 a l-a c

a disc. He n ce the condition (35) can be verified extremely easily.

7.1. Non-ex istence example.

Let f ( z) := (z — 3 + 2i ) (z — 3 —  2i) = z2 
— 6z + 13 and B := < 0 , 2 ) .

Clearly 4.’ (B) = ( — 6 , 4 ) . By (34), ( 35) one gets there fore f a F wi th ‘ (B) = -3/10 ,

3( B )  = 2/3.

By using the simplified ball Newton algorithm SHA one gets (see Figure 4 ) :

Z
0 

= (0 , 2 ) , Hz
0 

= (3.9 , 2.6> , Z
1 

= <83/52 , v’~~~~ /52 ) , Hz
1 

= (18319/5408 , 3229/ 270 4

c ( 3 . 4 , 1.3). Hence Z
0 

ci Hz1 = 0 and the algorithm SNA is stopped. By the non

e xistence test H and Theorem 1 there is therefore no zero z of f ira. Z
0 

= B.

7.2. Existence example.

Let f ( z )  := (z — l ) ( z  — 4 ) = z2 
— 5z + 4 and B := (0 , 2> . clearly

41 ’ (B) = ( — 5 , 4 > .  By (34) ,  (35) one the re fore gets f € F with -‘ (B) = —5/ 9 and

3(B) = 4/5. The discs Z
0 

:= B , ~~ ,
, , Z4

, Hz 0 , , Hz
3 

o f the algorithra-

SNA are sketche d in Figure s 5 and 6. One sees immediately that Hz 1 C Z
0
. Hence by

the existence test E there exists (exactly) one ze ro i € Hz1 c 
~0 

= B. The speed of

convergence of the simplified algorithm SHA is ve ry low . See the value s in table I

where the discs Z
0 to Z4 are given. Afte r 4 iterations not eve n the first digi t

of ~ is ensured.

The circles 41 ’ (Z) are sketched in Figure 7 for a = 0 , 1, 2.  One sees that

0 € 41’ (Z
1

) and that 41’ ci 41’ (Z1) = ~ ‘ (Z~ ). Hence , the impreved algorithm LA

cannot give bette r values than the algorithm SHA before V = 2. Starting with the

inde x V = 2 , the results are actually muc h bette r due to the inclusion

~~
‘ 

~~~ 
c •‘ (2 ). This can be seen from the values in table 1 for the discs a -

-25-
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a-a rc th~ value s af the radii ‘. ,  

~ 
one can already anticipate quadratic con-

vergence . After 4 iterations the quadratically convergent algorithm NA alread y

S uarantees nearl y 5 digits of ~~. After one sore iteration (which is not included a::

table 1) even 10 digits can be guaran teed.

Table 1. Comparison of the discs Z
0 to Z

4 
cre ated by the algori thms S ] A  and LA

for the example 7.2.

- Simplified ball Newton algo- Ball Newton algorithm NA ,
I rithm SNA , linearly convergent quadratically convergent -

Z~ < 0  , 2 ) < 0  , 2

( 1.3 , 1.519 . . . ) < 1 . 3  , 1.519 . .
(0.85 , 0.36 I <0 .85  , 0.36

Z
3 

(1.1125 , 0.21 ) (1.000338 ‘ . , 0.032801

z4 (0 .9320  . . , 0.1443 . ) (0.99999979 , 0.00000740 . . . )

~~~~~~~~~~~~ Nz0
~~~~~~2i 

~~~~~~~~~~~~-2 -1; ~~z2 1’ 3  L ’ 5  G~~7 8

~i~
• 

~±1:~’ I

ag-a -re 4. Example 7.1 The four discs Z
0 , Hz0 , Z

1
, Hz

1
. The set ‘1 Hz0

is shaded. Since a Nz
1 

= 0 there is no zero z e Z
0
.

—26-



Figure 5. Example 7 .2 .  Sketched are the three discs Z
0
, Hz

0
, Z

1
. The set

Z0 ci Hz
0 

is shade d. The zero z = 1 lies in Z
0
, Hz , Z 1 Hz 

-
and in Z

1
.

7

Nz1-Z 2 a

(

~~~~3~~~~~~~~~~Z2~~ 3

z— 1 -

. :xarnr — le 7.2 , larger scale than Figure 5. The discs Z
0 

to 2
4 are

shown . Hote that Z
2 

= Nz
1 

C Z
0 . Hence by test E there exists a

zero z(= 1) wi th ~ a- Hz 1 C Z
o .

— ‘ 7 —

__.=,* _ _ _ w

~

__t_ =_ ~- - - -  — , M #  
________

-4 -—— -4 —4.-— 4- —~~ --4. .— —~~~—--.-- 4-.’ — ‘~•~~~~ = —— ~~~~~~~~~~~ .— .—‘-— -~~~~~~ _-‘~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _  

-
~~

\
ii

~‘(Z0) /~1 / \ ~~ ‘(Z1)

1 7 =6 
~

S ~
) 2 / a

~(Z 2 ) /

/
/

/

Figure 7. Example 7.2. The three discs 41 ’ 
~~ 

to a ’ (Z
2

) are shown . No te

that 0 e 41’ (Z
1) and that 41 ’ (Z

2
) c 41 ’ (Z

o
).
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